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Abstract 

Compressed sensing is a new information sampling theory and it’s done for acquiring 

sparse (or) compressible data with much fewer measurements. This is particularly 

important for some imaging applications such as magnetic resonance image or in 

astronomy. In many practical situations, the noise behavior is impulsive and that the 

probability density function has very complex calculation than Gaussian. This 

motivates a number of impulsive noise suppression methods. Therefore, a new method 

is called robust CS is applied, following the principle of robust statistics which is using 

a convex but quadratic cost function on the residuals. By using a robust cost function 

on the residuals, we are able to suppress large outliers in the measurement noise. It also 

shows that an iterative algorithm can be developed under minimization– majorization 

framework and have established a theoretical guarantee on the improvement of the 

upper bound of the recovery error. The proposed method can be used to improve Cs 

recovery depend upon an inspection of the residuals for impulsiveness. 
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1. Introduction   

 

1.1. Image Compression 

 

This thesis develops algorithms and applications in an emerging topic of signal processing 

called compressive sensing. Compressive sensing developed from questions raised about the 

efficiency of the conventional signal processing pipeline for compression, coding and recovery 

of natural signals, including audio, still images and video. The usual sequence of steps involved 

includes the following. First, the analog signal is sampled by a sensor such as a camera to 

obtain a sufficiently large number of digital samples. Second, the digitized samples are 

transformed into a suitable domain to compact the energy (and hence the information) into a 

relatively small number of numbers, called coefficients. The transformation is chosen to 

approximate the optimal Karhunen-Loeve transform and results in a representation of the 

original signal as a linear sum of a set of bases weighed by the coefficients. Most of the 

coefficients are small in magnitude and only a few coefficients contain a significant amount of 

energy. This implies that most of the information in the signal is concentrated in only a few 

bases of the signal. Third, this sparsity of transform coefficients is exploited to efficiently code 

the locations of the few large coefficients, and the magnitudes of these large coefficients are 

quantized and entropy coded. Finally, the coded representation is stored and/or transmitted to 

a decoder, where the coding and transformation steps are reversed to obtain a good 

approximation of the original set of digital samples, which can be used for D/A conversion and 

presentation to a viewer, with a quality close to that of the original sampled scene. 
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Figure.1. Left: Original image size 512x512; Right: Reconstructed image using 10000 largest 

magnitude coefficients 

 

This model is followed by all modern lossy compression algorithms for audio, still images and 

video, including the JPEG and JPEG2000 standards for still images [1,2], the Set Partitioning 

in Hierarchical Trees (SPIHT) algorithm for still image coding [3] , and the MPEG and H.264 

standards [4] , [5] for video compression. The JPEG standard and MPEG standards use the 8x8 

pixel Discrete Cosine Transform (DCT) to obtain energy compaction and de correlation, while 

the JPEG2000 standard and the SPIHT coder use a wavelet basis. Even if only a relatively 

small number of the largest magnitude coefficients is transmitted to the decoder, and the 

remaining are assumed to be zero, a good reproduction of the original image is obtained when 

the transform is inverted. Hence it is sufficient to transmit information only about the most 

significant coefficients to the receiver. This raises the following question: If only a few of the 

transform domain coefficients are needed for an acceptable reproduction, is it possible to 

bypass the step of recording a large number of samples, transforming them, and then throwing 

away all the insignificant coefficients Can one instead obtain the significant coefficients 

directly. 

 

1.1.1. Overview of Comprehensive Sensing 

Consider an underdetermined system y=Φ where Φ with , is a M<N N-dimensional 

signal and y is a length vector of measurements equal to linear combinations of c . Suppose 
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that has nonzero elements, and we wish to recover from , One possible technique is to 

consider every subset Φ of columns drawn from Φ and test whether it fits by least squares 

leaving no residue. However this requires testing of C(N,S) subsets, which is infeasible for 

even moderate values of and S. show that if has nonzero elements with S=M/2and the matrix 

Φ satisfies some additional conditions, then can be recovered either exactly or with a small 

approximation error. For example, it is shown in [7] that if matrix Φ satisfies a Restricted 

Isometry Property (RIP), then minimization can recover the vector. 

 

 

 

for every size m subset I of columns of Φ . If Φ satisfies the RIP with M=2S and then can be 

recovered perfectly by solving 

 

If is not exactly sparse, but the components decay rapidly in magnitude, then C can be 

approximately recovered with a distortion that is bounded by 

 

Where C0 is a small constant. The linear program in Equation (1.2) is a convex optimization 

problem that can be solved efficiently by interior point methods. However it is difficult to 

prove that a matrix Φ satisfies the RIP, and for large signals the convex optimization can still 

be computationally slow. 

 

1.2. The Incoherence Parameter 

An alternative formulation to Restricted Isometry has been defined in [8] that lower bounds 

the number of samples needed for perfect recovery using an incoherence parameter μ. Suppose 

that V (size n x n) is an orthogonal matrix satisfying VTV=nI and V . Select any M rows from 

V, to give the M x N matrix Φ as before. If the signal c has m nonzero values that are ±1, and 

if 20 M   and also for some constants C0 and C1, then with probability exceeding 1-δ, thesignal 

c can be recovered by solving the same l1- minimization mentioned above. 
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1.3. Example Of Recovery Using L1 Minimization 

We illustrate the results above with some examples. The RIP property is satisfied with high 

probability for Gaussian matrices, i.e., matrices with entries drawn from a Gaussian 

distribution . We construct a size 128 x 200 matrix U with entries drawn from a 0-mean 

Gaussian distribution with variance 1/128. This makes i E U     for all i, where Ui denotes the 

ith column of U and form a sparse vector c with 40 nonzero entries drawn from a random 

distribution. This is used to get , a length 128 sized sample vector. Then use l1-minimizationas 

described above to recover the signal x. We show the original signal and the recovered signal 

in Fig. 1.2. 

 

Figure. 1.3. Original signal with 40 nonzero entries on left, recovered signal on the right 

A second approach to this problem involves greedy algorithms such as Orthogonal Matching 

Pursuit (OMP) [9] and its variants [10] [11] [12] [13]. In these algorithms, the projection Φ of 

the data is used to identify a single or a few bases that is/are believed to be in the true signal, 

and then the component of the data that is spanned by all the bases selected so far is removed, 

leaving behind a residue that is orthogonal to the bases selected. The residue is then used 

to identify more bases using Z Tr. The Orthogonal Matching Pursuit algorithm is listed in 

Fig. 1.3.  
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Figure.1.3. Orthogonal Matching Pursuit 

 

Compressed sensing (CS) has emerged as a new framework for signal acquisition and sensor 

design. CS enables a potentially large reduction in the sampling and computation costs for 

sensing signals that have a sparse or compressible representation. While the Nyquist-Shannon 

sampling theorem states that a certain minimum number of samples is required in order to 

perfectly capture an arbitrary band limited signal, when the signal is sparse in a known basis 

we can vastly reduce the number of measurements that need to be stored. 

 

In recent years, compressed sensing (CS) has attracted considerable attention in areas of 

applied mathematics, computer science, and electrical engineering by suggesting that it may 

be possible to surpass the traditional limits of sampling theory. CS builds upon the 

fundamental fact that we can represent many signals using only a few non-zero coefficients 

in a suitable basis . Nonlinear optimization can then enable recovery of such signals from 

very few measurements. 

 

Unfortunately, in many important and emerging applications, the resulting Nyquist rate is so 

high that we end up with far too many samples. Alternatively, it may simply be too costly, or 

even physically impossible, to build devices capable of acquiring samples at the necessary 
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rate. Thus, despite extraordinary advances in computational power, the acquisition and 

processing of signals in application areas such as imaging, video, medical imaging, remote 

surveillance, spectroscopy, and genomic data analysis continues to pose a tremendous 

challenge. 

 

The logistical and computational challenges involved in dealing with such high-dimensional 

data, we often depend on compression, which aims at finding the most concise representation 

of a signal that is able to achieve a target level of acceptable distortion. One of the most 

popular techniques for signal compression is known as transform coding, and typically relies 

on finding a basis or frame that provides sparse or compressible representations for signals in 

a class of interest . 

By a sparse representation, we mean that for a signal of length n, we can represent it with k << 

n nonzero coefficients; by a compressible representation, we mean that the signal is well-

approximated by a signal with only k nonzero coefficients.Both sparse and compressible 

signals can be represented with high fidelity by preserving only the values and locations of the 

largest coefficients of the signal. This process is called sparse approximation, and forms the 

foundation of transform coding schemes that exploit signal sparsity and compressibility, 

including the JPEG, JPEG2000, MPEG, and MP3 standards. 

2. Mathematical Modeling  

2.1.  Optimal Condition 

The first-order optimality condition of is , 

 

where ∂E(x∗ ) is the subdifferential of E(・) at x∗ .We can apply the general property 
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for a convex function f and its convex conjugate 

 

and get the equivalent condition: x∗ is optimal if and only if there exists an auxiliary 

variable y∗ = (y∗ ij) 

where yij € R2, such that 

assume that signal X€RN is s-sparse in basis Ψ=I. by using RIP constant , The sparese 

vector X€RN means, 

                                                                                                   ………………………. (2) 

error upper bounded by O(║n║2) 

……………………………..(3) 

for a suitable value of the regularization parameter λ. by adjusting the λ the effect of outliers 

can be reduced. 

The equation (3) is based on two goals, 

 Minimizing the l2_ norm of the residuals 

 Minimizing the l1 norm of the signal. 

When the noise is Gaussian, this objective function is optimal in the maximum likelihood 

sense. However, when the noise is impulsive, the theory of robust statistics 
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Indicates that it would be prone to larger errors. The theory of robust statistics1 that a 

betterstrategy is to  replace the quadratic cost function on residual ║Y-φx║2
2 

 

 

 

and the robust CS recovery is obtained by solving 

 

2.2 Block Diagram Of The Project 

 

Figure.2.2. Block diagram of the project 

The purpose of this project is to examine the quality of the recovered images from CS samples 

under the influence of impulsive noise. To get the Compressive sensing image the Sparse and 

Measurement matrix would be Computed then the proposed Robust CS recovery method 

would be computed. 
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2.3. Pre-Processing 

 

The input Image would be the MRI image contaminated with the impulse noise and then the 

input image shall be scaled with respect to the coefficients mask .the Sparsity level would be 

the input for Measurement matrix. 

2.4. Inputs 

The MATLAB code shall have the following as user inputs, Input Image 

 

2.4. Outputs 

 

The MATLAB code shall have the following as user outputs, 

 Compressive sensing Image 

 Robust CS recovery image 

 

2.5. Algorithms Involved 

 Minimization Algorithm 

 Convex Optimization 

 Robust CS Recovery 

 

2.6. Modules Of The Block Diagram 

The base paper has been segregated into following modules, 

Module I: 

  CS Recovery method Module II: 

 Robust CS Recovery 
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2.7. CS Recovery 

The main goal of this project is to carry out an empirical analysis of the rate-

distortionperformance of CS in image compression. If the impulsive noise enters a CS imaging 

application at the sensory level, the compressed data will be contaminated. The issues such 

as the minimization algorithm used and the transform employed, as well as the trade-off 

between number of measurements and quantization error. The measurement matrix shall be 

computed by using Fourier ,Bernoulli and uniform etc..By using the measurement matrix and 

Sparse matrix the CS formulation would be computed. The L2 minimization method one of 

the minimization method which is used for Standard CS recovery method. The Residual error 

would be large in L2 norm minimization method due to outliers. The Recovery efficiency of 

an L2 norm minimization also is low because of the residual error. 

 

2.8. ROBUST CS RECOVERY 

As mentioned above the recovery efficiency of the standard compressive sensing would be 

small so the output image computed by using standard CS formulation would be the low PSNR 

image. If the PSNR value is low means the image clarity would be low. So to get the high 

PSNR the robust compressive sensing algorithm would be computed .This problem involves in 

integrating robust statistics and the CS theory. So the proposed method for CS called robust 

CS, following the principle of robust statistics which is using a convex but sub quadratic cost 

function on the residuals. Finally the PSNR of the recovered image by the proposed CS 

formulation has a slightly higher value than that obtained by the standard CS formulation. The 

Robust CS Recovery method can reduce effectively the recovery error bound and show that 

the improvement is related directly to the portion and the strength of the outliers in the noise 

samples. 
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3. Fast Composite Splitting Algorithms 

 

FCSA decomposes the difficult composite regularization problem into multiple simpler sub 

problems and solve them in parallel. Each sub problems can be solved by the FISTA, which 

requires only O(1/√€) iterations to obtain an € optimal solution. 

 

In this algorithm, if we remove the acceleration step by setting t k+1 ≡ 1 in each 

iteration, we obtain the CSA. A key feature of the FCSA is its fast convergence performance 

borrowed the FISTA. we know that the FISTA can obtain an optimal € solution in 

O(1/√€).Another key feature of the FCSA is that the cost of each iteration may be O(mp 

log(p) under the following conditions: (1) the step y k = proxp(g )(B (rk 

∆f(r
k ))) can be computed with the costO(p log(p)) for some prior models gi if Bi can be 

computed with O(p log(p)); (2) the step xk
= 1/m ∑

m (Bi
-1 y k can also be computed with 

the cost of O(p log(p)) in these cases; and (3) other steps only involve adding vectors or 

scalars, thus cost only O(p) or O(1). 

 

3.1. Enhancement 

Here in this work the enhancement proposed gives a better result in terms of both accuracy and 

computational complexity. FCSA is more efficient than the TVCMRI and RecPF.It helps in 
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getting a perfect image without any noise and thus that image is given for futher process of 

image compression. 

 

4. Result and Conclusion 

I have presented a new approach to improving CS recovery in the presence of impulsive noise. 

By using a robust cost function on the residuals, we are able to suppress large outliers in the 

measurement noise. This results in an improved recovery because the regularization 

parameter is not influenced significantly by these outliers, meaning that the recovered signal 

is not being driven further toward 0. We also show that an iterative algorithm can be 

developed readily under the MM framework to utilize the power and computational efficiency 

to obtain the solution of the new formulation. 

 

Most importantly, i have established a theoretical guarantee on the improvement of the upper 

bound of the recovery error. The numerical studies on both synthetic and real images show that 

the proposed formulation achieves equivalent performance when the noise is indeed Gaussian, 

but an improvement is found when the noise is heavily impulsive.The proposed method can be 

used to improve further CS recovery upon an inspection of the residuals for impulsiveness. 
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4.1 Minimization Output Image 

 

 

(a) Output Of L2 Minimization (b) TV Denoised 

4.2 SIMULATION OUTPUT OF CSA AND FCSA 
 

 

 

Table.1. Comparison Performance of L2 minimization and 

FCSA Methods 
 
 

Image Parameters SNR 

Values 

PSNR 

Values 

RMSE 

Values 

COC Values 

L2 Minimization 1.4592 12.2878 0.1411 0.7084 

Fast Composite 

Splitting Algorithm 
 

24.5128 

 

29.8675 

 

62.4545 

 

0.9995 
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